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ABSTRACT. According to an ancient photonic model it is possible to light polarize without 

crystals. This amazing model evidences that the photon is not a boson but a “faithful wedded pair” 

of fermions with the same mass and opposite electric charge. Its intimate structure, with concordant 

angular momenta and discordant spins, gives rise to a paramagnetism which, in presence of a 

magnetic field, causes gyroscope motions with typical Larmor precessions, linked in the orientation 

of magnetic field and magnetic moment; if the magnetic field has a gradient it is possible to polarize 

the angular momenta states. The experimental evidence can be obtained using a complicated Stern 

Gerlach apparatus: although the high vacuum is no more necessary and the furnace is substituted by 

a humble light bulb, optical loops or traps (like buffer gas cells) are needed, in the gap of the 

electromagnet, in order to increase the extremely low cross time which the deflection depends on. 

The theoretic and practical consequences are considerable and all of them to be rediscovered. 

The Nala-Damayanti model 

The Mahabharata clearly gives us an accurate structure of the photon in the legend of Nala and 

Damayanti
1
. According to this “innovative” model two particles (the most beautiful of the universe) 

with the same mass and opposite electric charge, Damayanti  (negative) and Nala  (positive), 

united in an unbreakable couple, oscillate, along the three directions of the space, around the same 

orbital “S” in a hydrogen-like system (fig. 1). 
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1
 Mahabharata, III (Vana Parva), 53,1 – 79,5. 



The  particle has a leading role, because it is able to impose on  a revolution which is concordant 

with its spin and angular momentum. This model doesn’t violate the Pauli principle, according to 

which the only possible spin configuration in such an orbital is ↑↓. Thus, as a matter of fact, we are 

forced to assume a zero total spin (Stot = S + S = 0), while the total angular momentum obviously 

is Ltot = L + LLLtot = 0 is impossible because it would cause a destructive collision). 

The photon state therefore is very peculiar; the addition of its two spins cannot produce the states 

| +  + ⟩u or | −  − ⟩u (u is the generic unit vector of the space): the only allowed spin states are 

| +  − ⟩u or | −  +⟩u; on the other hand the addition of its two angular momenta never produces the 

states | +  − ⟩u or | −  +⟩u: the only allowed angular momenta states are | +  +⟩u or | −  − ⟩u. 

Furthermore Ltot is always parallel to the spins S and S! We can then accurately avoid the separate 

additions of orbital angular momenta and spins and also the related classical four-dimensional state 

space calculations or, better still, the global sixteen-dimensional one, because they are a little more 

complicated and time wasting, with the same results. If we want to investigate Ltot and the effect 

produced by S and S(although we know that, being Stot null, its measurementswith any 

observable give null results), all we need is a simple two-dimensional state space calculation; that 

will be better understood in the next sections. 

A strong 2D character 

Let J be one among L, L, S, or SIf j(j+1)h
2
 and mh denote the eigenvalues of J

2
 and Jz, it is 

easily verifiable for photons that the only possible value for j is the first positive half-integer 1/2, 

while m can take on the values – j or j. We obtain the two-dimensional observables: 

J
2
 = j(j+1)ℎ2(

1 0
0 1

) =  
3

4
ℎ2(
1 0
0 1

)  Jz =  mℎ (
1    0
0 −1

) = 
ℎ

2
 (
1    0
0 −1

) 

This scheme applies to every single angular momentum and spin; thus we obtain: 

L
2
 =  

3

4
ℎ2(
1 0
0 1

)  Lz = 
ℎ

2
 (
1    0
0 −1

) 

L
2
 =  

3

4
ℎ2(
1 0
0 1

)  Lz = 
ℎ

2
 (
1    0
0 −1

) 

S
2
 =  

3

4
ℎ2(
1 0
0 1

)  Sz = 
ℎ

2
 (
1    0
0 −1

) 

S
2
 =  

3

4
ℎ2(
1 0
0 1

)  Sz = 
ℎ

2
 (
1    0
0 −1

) 

Angular momenta and spins have the same behaviour; they show a pronounced two-dimensional 

character: that’s why we got the spin of the photon mixed up with its angular momentum! 

Larmor precession 

It is clear that a photon, being neutral, is not subjected to the Lorentz force, but in a magnetic field 

something happens, because of the opposite electric charge of the two particles  and : while the 

concordant angular momenta don’t produce any effect (there is steadily a null resultant magnetic 

moment M + M = 0), two discordant spins generate concordant magnetic moments; thus the 

permanent total magnetic moment Mtot = M + M = 2M (fig. 2) gives the photon an unexpected 



paramagnetic behaviour. It is  useful noting that the permanent moment Mtot is the only measurable 

physical quantity which makes us trace back the spins S and S. 

↑L ↓M   ↓L ↑M

↑L ↑M   ↓L ↓M 

 

↓S ↑M   ↑S ↓M

↑S ↑M   ↓S ↓M 


Figure 2 

Since M = S with  gyromagnetic ratio (positive for  particle, unlike the electron), if we 

consider a photon in a uniform magnetic field B and choose the z axis along B (fig. 3), the total 

moment  tot acting on the photon is the vector product: 

 
Figure 3 

tot = 2M × B = Mtot × B 

but, since Stot is constantly null with its time-derivatives, the angular momentum theorem states: 

𝑑

𝑑𝑡
Ltot = tot  

that’s to say: 

𝑑

𝑑𝑡
Ltot = Mtot × B = 2M × B = 2S× B = Ltot × B 

As dLtot/dt is perpendicular to B and Ltot, performing a scalar multiplication on both members of 

this equation by either Ltot or B, we obtain: 

Ltot . 
𝑑

𝑑𝑡
Ltot = 0    →    

𝑑

𝑑𝑡
(Ltot)

2
 = 0 



B . 
𝑑

𝑑𝑡
Ltot = 0    →    

𝑑

𝑑𝑡
(B . Ltot) = 0 

The photon thus behaves like a gyroscope: the angular momentum Ltot evolves with a constant 

modulus, maintaining a constant angle 𝜗 with B and the rotational angular velocity about the z axis 

depends on  and B. We can deduce that the photon has a typical Larmor precession. 

The classical potential energy is the scalar product: 

W = – 2MB = – 2MzB = – 2BSz 

where B is the modulus of the magnetic field and Sz is the component of S along z. This energy, 

expressed through Ltotz, the component of Ltot along z, becomes:  

W = – BLtotz = 
𝜔

2
Ltotz  

where  = – 2B (negative because  is positive). 

Convenient state subspaces 

The addition of orbital angular momenta and spins gives: 

Jtot = L + L + S + S 

The resultant Jtot would require a sixteen-dimensional state space in the orthonormal base           

|+ + + +⟩, |+ + + −⟩, |+ + − +⟩, |+ + − −⟩, |+ − + +⟩, |+ − + −⟩, |+ − − +⟩, 

|+ − − −⟩, |− + + +⟩, |− + + −⟩, |− + − +⟩, |− + − −⟩, |− − + +⟩, |− − + −⟩, 

|− − − +⟩, |− − − −⟩, but only the results |+ + + −⟩ (eigenvalue +h) and |− − − +⟩ 

(eigenvalue – h) can be found in a measurement of the observable Jz, which have ten non-null 

elements only in its diagonal: 

Jz = ℎ 

(

 
 
 
 
 
 
 
 
 
 
 
 
 

2 . . . . . . . . . . . . . . .
. 1 . . . . . . . . . . . . . .
. . 1 . . . . . . . . . . . . .
. . . 0 . . . . . . . . . . . .
. . . . 1 . . . . . . . . . . .
. . . . . 0 . . . . . . . . . .
. . . . . . 0 . . . . . . . . .
. . . . . . . −1 . . . . . . . .
. . . . . . . . 1 . . . . . . .
. . . . . . . . . 0 . . . . . .
. . . . . . . . . . 0 . . . . .
. . . . . . . . . . . −1 . . . .
. . . . . . . . . . . . 0 . . .
. . . . . . . . . . . . . −1 . .
. . . . . . . . . . . . . . −1 .
. . . . . . . . . . . . . . . −2)

 
 
 
 
 
 
 
 
 
 
 
 
 

 



that’s to say we need only the two-dimensional subspace spanned by the eigenvectors |+ + + −⟩ 

and |− − − +⟩! Eliminating all the rows and columns, except for the second and second-last rows 

and for the second and second-last columns, Jz simply becomes: 

Jz = ℎ (
1    0
0 −1

) 

with simplified eigenvectors | + ⟩ (corresponding to |+ + + −⟩) and | − ⟩ (corresponding to 

|− − − +⟩) and same eigenvalues ±h. Remembering that Stot is constantly null we can say that the 

angular momentum state Ltot has the observable Lz: 

Lz = ℎ (
1    0
0 −1

) 

As Mtot behave like Ltot (fig. 2) we can directly have the observable Mz of Mtot in the bi-

dimensional format: 

Mz =  ℎ (
1    0
0 −1

) 

The reduction of the observable Jx is more fascinating. Jx is obtainable by summing Jx1, Jx2, Jx3 and 

Jx4: 

Jx = 
ℎ

2
 

(

 
 
 
 
 
 
 
 
 
 
 
 
 

. 1 1 . 1 . . . 1 . . . . . . .
1 . . 1 . 1 . . . 1 . . . . . .
1 . . 1 . . 1 . . . 1 . . . . .
. 1 1 . . . . 1 . . . 1 . . . .
1 . . . . 1 1 . . . . . 1 . . .
. 1 . . 1 . . 1 . . . . . 1 . .
. . 1 . 1 . . 1 . . . . . . 1 .
. . . 1 . 1 1 . . . . . . . . 1
1 . . . . . . . . 1 1 . 1 . . .
. 1 . . . . . . 1 . . 1 . 1 . .
. . 1 . . . . . 1 . . 1 . . 1 .
. . . 1 . . . . . 1 1 . . . . 1
. . . . 1 . . . 1 . . . . 1 1 .
. . . . . 1 . . . 1 . . 1 . . 1
. . . . . . 1 . . . 1 . 1 . . 1
. . . . . . . 1 . . . 1 . 1 1 . )

 
 
 
 
 
 
 
 
 
 
 
 
 

 

The only possible eigenvectors |+ + + −⟩x and |− − − +⟩x define the two-dimensional subspace 

with the eigenvalues ±h for Jx; detailing their eigenbras (only for mere convenience) we have: 

x⟨+ + + −| = 
1

4
 (1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1) 

x⟨− − − +| = 
1

4
 (1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1) 

Keeping only the first two rows and columns on and doubling their value (in order to have the same 

eigenvalues), preserving the symmetry-antisymmetry of the two eigenvectors, Jx simply becomes: 



Jx= ℎ (
0 1
1 0

) 

such an observable is characterized by the eigenvalues ±h and the eigenvectors 1/√2(| + ⟩ + | − ⟩) 

(corresponding to |+ + + −⟩x) and 1/√2(| + ⟩ − | − ⟩) (corresponding to |− − − +⟩x). The 2 × 2 

matrices Lx and Mx we are searching for are: 

Lx = ℎ (
0 1
1 0

)  Mx =  ℎ (
0 1
1 0

) 

In an absolutely similar way we find out the observable Ly and My: 

Ly = ℎ (
0 −𝑖
𝑖    0

) My =  ℎ (
0 −𝑖
𝑖    0

) 

which have eigenvalues ±h and eigenvectors 1/√2(| + ⟩ ±  𝑖 | − ⟩) in a pure two-dimension state 

space. 

 
Figure 4 

The generic observables Lu and Mu are simple combinations among Lz, Lx, Ly and Mz, Mx, My; while 

considering  the polar angles 𝜗 and 𝜑 (fig. 4) we have: 

Lu = Lz cos𝜗
 
+ Lx sin𝜗 cos𝜑 + Ly sin𝜗 sin𝜑             Mu = Mz cos𝜗

 
+ Mx sin𝜗 cos𝜑 + My sin𝜗 sin𝜑 

Lu = ℎ ( cos𝜗        sin𝜗𝑒−𝑖𝜑

sin𝜗𝑒𝑖𝜑    −cos 𝜗
) Mu = ℎ ( cos𝜗        sin𝜗𝑒−𝑖𝜑

sin𝜗𝑒𝑖𝜑    −cos 𝜗
) 

such matrices have two non-degenerate eigenvalues +h and –  h with the respective eigenvectors: 

cos
𝜗

2
𝑒−𝑖𝜑/2 | + ⟩ + sin

𝜗

2
𝑒𝑖𝜑/2 | − ⟩ 

–sin
𝜗

2
𝑒−𝑖𝜑/2 | + ⟩ + cos

𝜗

2
𝑒𝑖𝜑/2 | − ⟩ 

Summing up the observables of Ltot are: 

Lz = ℎ (
1    0
0 −1

) Lx = ℎ (
0 1
1 0

)  Ly = ℎ (
0 −𝑖
𝑖    0

) Lu = ℎ ( cos𝜗        sin𝜗𝑒−𝑖𝜑

sin𝜗𝑒𝑖𝜑    −cos 𝜗
) 



while those of Mtot are:  

Mz = ℎ (
1    0
0 −1

)       Mx = ℎ (
0 1
1 0

)       My = ℎ (
0 −𝑖
𝑖    0

)       Mu = ℎ ( cos𝜗        sin𝜗𝑒−𝑖𝜑

sin𝜗𝑒𝑖𝜑    −cos 𝜗
) 

That’s to say they have different eigenvalues (± h and ± h) with the same eigenvectors: | + ⟩ and 

| − ⟩ for Lz and Mz, 1/√2(| + ⟩ ± | − ⟩) for Lx and Mx, 1/√2(| + ⟩ ±i | − ⟩) for Ly and My, cos
𝜗

2
𝑒−𝑖𝜑/2 

| + ⟩ + sin
𝜗

2
𝑒𝑖𝜑/2 | − ⟩ and –sin

𝜗

2
𝑒−𝑖𝜑/2 | + ⟩ + cos

𝜗

2
𝑒𝑖𝜑/2 | − ⟩ for Lu and Mu. 

The complete sets of commuting observables (C.S.C.O.) for the angular momentum Ltot are L
2
 and 

one among Lz, Lx, Ly and Lu (e.g. {L
2
, Lz}), while for the magnetic moment Mtot are M

2
 and one 

among Mz, Mx, My and Mu (e.g. {M
2
, Mz}), where: 

L
2
 = Lx

2
 + Ly

2
 + Lz

2
 = 3h

2
I and M

2
 = Mx

2
 + My

2
 + Mz

2
 = 3(h)

2
I 

with I the identity matrix. 

Evolution in a uniform magnetic field 

Let 𝜗 and  be the polar angles of the vectors Ltotand Mtot (fig. 4), the total angular momentum 

and the total magnetic moment of the photon, along the unit vector u; in the basis of the 

eigenvectors | + ⟩ and | − ⟩, characterizing the observable Lz and Mz, the total angular momentum 

state | (𝑡) ⟩L (fig. 3a) and the parallel associated magnetic moment state | 𝜓(𝑡) ⟩M, at time t = 0, 

are:

| (0) ⟩Lcos
𝜗

2
𝑒−𝑖𝜑/2 | + ⟩ + sin

𝜗

2
𝑒𝑖𝜑/2 | − ⟩ 

| 𝜓(0) ⟩Mcos
𝜗

2
𝑒−𝑖𝜑/2 | + ⟩ + sin

𝜗

2
𝑒𝑖𝜑/2 | − ⟩ 

(They coincide because Lz and Mz commute). We can quantize the potential energy W = (Ltotz 

replacing Ltotz by the observable Lz and W by the Hamiltonian H which describes the evolution of 

the total angular momentum in the field B; thus we have: 

 H = 
𝜔

2
 Lz = 

𝜔

2
ℎ (
1    0
0 −1

) 

which is clearly time-independent; since H and Lz have the same eigenvectors: 

H | + ⟩= 
𝜔

2
ℎ| + ⟩ 

H | − ⟩ = –
𝜔

2
ℎ| − ⟩ 

there are two energy levels E° = + h and E°° = – h; their difference h defines the Bohr 

frequency fB = =  E°E°°)/h. 

The state vector | (𝑡) ⟩L, at a generic time t, can be written: 

| (𝑡) ⟩L a(t) | + ⟩ + b(t) | − ⟩ 

so we have a simply to solve Schrödinger equation: 



𝑖ℎ
𝑑

𝑑𝑡
 | (𝑡) ⟩L = H| (𝑡) ⟩L   that is    {

𝑖ℎ
𝑑

𝑑𝑡
𝑎(𝑡) =  

𝜔ℎ

2
𝑎(𝑡)

𝑖ℎ
𝑑

𝑑𝑡
𝑏(𝑡) = –

𝜔ℎ

2
𝑏(𝑡)

   or  {

𝑑

𝑑𝑡
𝑎(𝑡) = − 

𝑖𝜔

2
𝑎(𝑡)

𝑑

𝑑𝑡
𝑏(𝑡) =  

𝑖𝜔

2
𝑏(𝑡)

 

with the solutions: 

{
𝑎(𝑡) =  𝐴𝑒−𝑖𝜔𝑡/2

𝑏(𝑡) =  𝐵𝑒𝑖𝜔𝑡/2
  with  {

𝐴 = 𝑎(0) = cos
𝜗

2
𝑒−𝑖𝜑/2 

𝐵 = 𝑏(0) = sin
𝜗

2
𝑒𝑖𝜑/2

 

The state vector | (𝑡) ⟩L becomes: 

| (𝑡) ⟩L cos
𝜗

2
𝑒−𝑖𝜑/2𝑒−𝑖𝜔𝑡/2 | + ⟩ + sin

𝜗

2
𝑒𝑖𝜑/2𝑒𝑖𝜔𝑡/2 | − ⟩

or, better still: 

| (𝑡) ⟩L cos
𝜗

2
𝑒−𝑖(𝜑+𝜔𝑡)/2 | + ⟩ + sin

𝜗

2
𝑒𝑖(𝜑+𝜔𝑡)/2 | − ⟩ 

The parallel associated state | 𝜓(𝑡) ⟩M, at a generic time t, is similarly calculated:

| 𝜓(𝑡) ⟩M cos
𝜗

2
𝑒−𝑖(𝜑+𝜔𝑡)/2 | + ⟩ + sin

𝜗

2
𝑒𝑖(𝜑+𝜔𝑡)/2 | − ⟩ 

Comparing the last two expressions at a generic time t with the correlated ones at time t = 0, we can 

observe that the direction along which the total angular momentum is + h and the magnetic moment 

is +h (fig. 3a), with certainty, has the polar angles: 

{
𝜗(𝑡) =  𝜗            
𝜑(𝑡) =  𝜑 + 𝜔𝑡

 

which are typical of a Larmor precession. 

Probabilities and mean values  

The probabilities of obtaining +h in a measurement of the observable Lz and +h in a measurement 

of the observable Mz, are the same (because the eigenvectors are the same): 

   |⟨+ |(𝑡)⟩L| 
2
 =  (1 0) (

cos
𝜗

2
𝑒−𝑖(𝜑+𝜔𝑡)/2

sin
𝜗

2
𝑒𝑖(𝜑+𝜔𝑡)/2

) | 2 = cos2 
𝜗

2
 

 

⟨ + |𝜓(𝑡)⟩| 
2
 =  (1 0) (

cos
𝜗

2
𝑒−𝑖(𝜑+𝜔𝑡)/2

sin
𝜗

2
𝑒𝑖(𝜑+𝜔𝑡)/2

) | 2 = cos2 
𝜗

2
 

with  depending on the gyromagnetic ratio and the magnetic field. Since the modulus of 

𝑒±𝑖(𝜑+𝜔𝑡)/2 is unitary, these probabilities are time-independent. Analogously the probabilities of 

obtaining – h in a measurement of the observable Lz and – h in a measurement of the observable 

Mz, are: 



|⟨− |(𝑡)⟩L| 
2
 =  (0 1) (

cos
𝜗

2
𝑒−𝑖(𝜑+𝜔𝑡)/2

sin
𝜗

2
𝑒𝑖(𝜑+𝜔𝑡)/2

) | 2 = sin2 
𝜗

2
 

⟨− |𝜓(𝑡)⟩| 
2
 =  (0 1) (

cos
𝜗

2
𝑒−𝑖(𝜑+𝜔𝑡)/2

sin
𝜗

2
𝑒𝑖(𝜑+𝜔𝑡)/2

) | 2 = sin2 
𝜗

2
  

time-independent too, while the mean value of Lz, for Ltot and the mean value of Mz for Mtot are 

also time-independent: 

L⟨𝜒(𝑡)Lz(𝑡)⟩L = (cos
𝜗

2
𝑒𝑖(𝜑+𝜔𝑡)/2 sin

𝜗

2
𝑒−𝑖(𝜑+𝜔𝑡)/2) ℎ (

1    0
0 −1

) (
cos

𝜗

2
𝑒−𝑖(𝜑+𝜔𝑡)/2

sin
𝜗

2
𝑒𝑖(𝜑+𝜔𝑡)/2

) = 

 = ℎ (cos
2 
𝜗

2
 – sin

2 
𝜗

2
) = ℎ cos 𝜗 

 

⟨𝜓(𝑡)Mz𝜓(𝑡)⟩ = (cos
𝜗

2
𝑒𝑖(𝜑+𝜔𝑡)/2 sin

𝜗

2
𝑒−𝑖(𝜑+𝜔𝑡)/2) h (

1    0
0 −1

) (
cos

𝜗

2
𝑒−𝑖(𝜑+𝜔𝑡)/2

sin
𝜗

2
𝑒𝑖(𝜑+𝜔𝑡)/2

) = 

 =  ℎ (cos
2 
𝜗

2
 – sin

2 
𝜗

2
) = ℎ cos 𝜗 

as we can see it is enough a simple arrangement ( ℎ instead of ℎ) for obtaining the mean value 

⟨ 𝑀z ⟩ from ⟨ 𝐿z ⟩ Thus, also considering that the probabilities are the same while calculated for Ltot 

or Mtot, from now on we shall neglect the redundant calculations. 

The probabilities of obtaining +h in a measurement of the observable Lx and +ℎ in a measurement 

of the observable Mx, are: 

x⟨+ |(𝑡)⟩L| 
2
 = (

1

√2

1

√2
) (

cos
𝜗

2
𝑒−𝑖(𝜑+𝜔𝑡)/2

sin
𝜗

2
𝑒𝑖(𝜑+𝜔𝑡)/2

)| 2 = 

=
1

√2
cos

𝜗

2
(cos

𝜑+𝜔𝑡

2
− 𝑖 sin

𝜑+𝜔𝑡

2
) +

1

√2
sin

𝜗

2
(cos

𝜑+𝜔𝑡

2
+ 𝑖 sin

𝜑+𝜔𝑡

2
)2 = 

= 
1

√2
cos

𝜗

2
cos

𝜑+𝜔𝑡

2
+

1

√2
sin

𝜗

2
cos

𝜑+𝜔𝑡

2
+

𝑖

√2
sin

𝜗

2
sin

𝜑+𝜔𝑡

2
−

𝑖

√2
cos

𝜗

2
sin

𝜑+𝜔𝑡

2
2 = 

= 
1

√2
cos

𝜑+𝜔𝑡

2
(cos

𝜗

2
+ sin

𝜗

2
) +

𝑖

√2
sin

𝜑+𝜔𝑡

2
( sin

𝜗

2
− cos

𝜗

2
)2 = 

= 
1

2
 cos2 

𝜑+𝜔𝑡

2
(cos

𝜗

2
+ sin

𝜗

2
)2+ 

1

2
 sin2 

𝜑+𝜔𝑡

2
(sin

𝜗

2
− cos

𝜗

2
)2 = 

= 
1

2
 cos2 

𝜑+𝜔𝑡

2
(1 + sin 𝜗) + 

1

2
 sin2 

𝜑+𝜔𝑡

2
(1 − sin 𝜗) = 

= 
1

2
+
1

2
sin 𝜗 (cos2 

𝜑+𝜔𝑡

2
− sin2 

𝜑+𝜔𝑡

2
) = 

= 
1

2
 +

1

2
sin 𝜗 cos(𝜑 + 𝜔𝑡) 

Analogously the probabilities of obtaining – h in a measurement of the observable Lx and – ℎ in a 

measurement of the observable Mx are: 

x⟨− |(𝑡)⟩L| 
2
 = 
1

2
 −

1

2
sin 𝜗 cos(𝜑 + 𝜔𝑡) 

 



The matrices Lx and Mx, which like Ly and My don’t commute with H, have time-dependent mean 

values: 

L⟨𝜒(𝑡)Lx(𝑡)⟩L = (cos
𝜗

2
𝑒𝑖(𝜑+𝜔𝑡)/2 sin

𝜗

2
𝑒−𝑖(𝜑+𝜔𝑡)/2) ℎ (

0 1
1 0

) (
cos

𝜗

2
𝑒−𝑖(𝜑+𝜔𝑡)/2

sin
𝜗

2
𝑒𝑖(𝜑+𝜔𝑡)/2

) = 

= ℎ sin 
𝜗

2
 cos 

𝜗

2
 (𝑒𝑖(𝜑+𝜔𝑡) + 𝑒−𝑖(𝜑+𝜔𝑡)) = ℎ sin 𝜗 cos (𝜑 + 𝜔𝑡) 

M⟨𝜓(𝑡)Mx𝜓(𝑡)⟩M = ℎ sin 𝜗 cos (𝜑 + 𝜔𝑡) 

The probabilities of obtaining +h in a measurement of the observable Ly and +ℎ in a measurement 

of the observable My, are: 

y⟨+ |(𝑡)⟩L| 
2
 = (

1

√2

−𝑖

√2
) (

cos
𝜗

2
𝑒−𝑖(𝜑+𝜔𝑡)/2

sin
𝜗

2
𝑒𝑖(𝜑+𝜔𝑡)/2

)| 2 = 

= 
1

√2
cos

𝜗

2
(cos

𝜑+𝜔𝑡

2
− 𝑖 sin

𝜑+𝜔𝑡

2
) −

𝑖

√2
sin

𝜗

2
(cos

𝜑+𝜔𝑡

2
+ 𝑖 sin

𝜑+𝜔𝑡

2
)2 = 

= 
1

√2
cos

𝜗

2
cos

𝜑+𝜔𝑡

2
+

1

√2
sin

𝜗

2
sin

𝜑+𝜔𝑡

2
−

𝑖

√2
sin

𝜗

2
cos

𝜑+𝜔𝑡

2
−

𝑖

√2
cos

𝜗

2
sin

𝜑+𝜔𝑡

2
2 = 

= 
1

2
[cos2 

𝜗

2
 cos2 

𝜑+𝜔𝑡

2
 +sin2 

𝜗

2
 sin2 

𝜑+𝜔𝑡

2
 +

1

2
sin 𝜗 sin(𝜑 + 𝜔𝑡)] + 

+ 
1

2
[sin2 

𝜗

2
 cos2 

𝜑+𝜔𝑡

2
 +cos2 

𝜗

2
 sin2 

𝜑+𝜔𝑡

2
 +

1

2
sin 𝜗 sin(𝜑 + 𝜔𝑡)] = 

= 
1

2
[cos2 

𝜑+𝜔𝑡

2
 (cos2 

𝜗

2
 +sin2 

𝜗

2
 )+sin2 

𝜑+𝜔𝑡

2
 (sin2 

𝜗

2
 + cos2 

𝜗

2
)+sin 𝜗 sin(𝜑 + 𝜔𝑡)] = 

= 
1

2
+
1

2
sin 𝜗 sin(𝜑 + 𝜔𝑡) 

Analogously the probabilities of obtaining – h in a measurement of the observable Ly and – ℎ in a 

measurement of the observable My are: 

y⟨− |(𝑡)⟩L| 
2
 = 
1

2
 −

1

2
sin 𝜗 sin(𝜑 + 𝜔𝑡) 

so the matrices Ly and My, which don’t commute with H, have mean values: 

L⟨𝜒(𝑡)Ly(𝑡)⟩L = (cos
𝜗

2
𝑒𝑖(𝜑+𝜔𝑡)/2 sin

𝜗

2
𝑒−𝑖(𝜑+𝜔𝑡)/2) ℎ (

0 −𝑖
𝑖    0

) (
cos

𝜗

2
𝑒−𝑖(𝜑+𝜔𝑡)/2

sin
𝜗

2
𝑒𝑖(𝜑+𝜔𝑡)/2

) = 

= ℎ sin 
𝜗

2
 cos 

𝜗

2
 (−𝑖𝑒𝑖(𝜑+𝜔𝑡) + 𝑖𝑒−𝑖(𝜑+𝜔𝑡)) = ℎ sin 𝜗 sin(𝜑 + 𝜔𝑡) 

M⟨𝜓(𝑡)My𝜓(𝑡)⟩M =  ℎ sin 𝜗 sin(𝜑 + 𝜔𝑡) 

which are clearly time-dependent. All the examined mean values are typical of Larmor precessions. 

More exactly ⟨ 𝐿z ⟩, ⟨ 𝐿x ⟩, and ⟨ 𝐿y ⟩ behave like the components of a classical angular momentum 

having modulus ℎ, while ⟨ 𝑀z ⟩, ⟨ 𝑀x ⟩, and ⟨ 𝑀y ⟩ similarly behave but with a different modulus ℎ. 

The Nala’s magic double dress 

The  particle, as we told above, plays a major role because it imposes on  its favourite revolution 

which can be clockwise or counterclockwise (fig. 5) with the same probabilities (in the legend Nala 

has a magic double dress). 



 
Figure 5 

Thus we have an antiparallel “couple of couple” in a spectacular double cohort dance
2
, or that we 

call an entangled state, which needs to be studied in a four-dimensional state space, characterized 

by the orthonormal base | +  + ⟩, | +  − ⟩, | − + ⟩ and | − − ⟩. The entanglement is unavoidable, 

because it is the only way to perfectly neutralize the magnetic moments
3
! It involves a double 

angular momentum state DL and a double magnetic moment state DM. We know in advance that 

these states have the same eigenvectors and similar observables (which differ only for ℎ and ℎ. 

Doing away with redundant calculations we can exclusively consider the double angular momentum 

state DL with the observables DLz, DLx, DLy, DLu, and the respective components L1z and L2z, L1x 

and L2x, L1y and L2y, L1u and L2u. All these observables and their entanglement compatible 

eigenvectors | +  − ⟩u and | −  + ⟩u are definable in the following way: 

DLz = 2ℎ (

1    0
0    0

0    0
0    0

0    0
0    0

0    0
0 −1

)   L1z = ℎ (

1    0
0    1

  0    0
  0    0

0    0
0    0

−1   0
  0 −1

)   L2z = ℎ (

1    0
0 −1

0    0
0    0

0   0
0   0

1    0
0 −1

) 

| +  − ⟩z = | +  − ⟩; | − + ⟩z = | − + ⟩ 

                                                           
2
 See note 8. 

3
 No mechanical perturbation is generated by two antiparallel magnetic moments. 



DLx = ℎ (

0 1
1 0

1 0
0 1

1 0
0 1

0 1
1 0

)   L1x = ℎ (

0 0
0 0

1 0
0 1

1 0
0 1

0 0
0 0

)   L2x = ℎ (

0 1
1 0

0 0
0 0

0 0
0 0

0 1
1 0

) 

| +  − ⟩x = 
1

2
 (| +  + ⟩ − |+ − ⟩ + |− + ⟩ − |− − ⟩) 

| −  + ⟩x = 
1

2
 (| +  + ⟩ + |+ − ⟩ − |− + ⟩ − |− − ⟩) 

DLy = ℎ (

0 −𝑖
𝑖   0

−𝑖 0
  0 −𝑖

𝑖   0
0   𝑖

  0 −𝑖
  𝑖 0

)   L1y = ℎ (

0   0
0   0

−𝑖 0
 0 −𝑖

𝑖   0
0   𝑖

 0   0
 0   0

)   L2y = ℎ (

0 −𝑖
𝑖   0

 0   0
 0   0

0   0
0   0

 0 −𝑖
  𝑖   0

) 

| +  − ⟩y = 
1

2
 (| +  + ⟩ − 𝑖 |+ − ⟩ + 𝑖 |− + ⟩ + |− − ⟩) 

| −  + ⟩y = 
1

2
 (| +  + ⟩ + 𝑖 |+ − ⟩ − 𝑖 |− + ⟩ + |− − ⟩) 

DLu = ℎ (

2cos𝜗 sin𝜗𝑒−𝑖𝜑

sin𝜗𝑒𝑖𝜑    0
sin𝜗𝑒−𝑖𝜑 0
      0 sin𝜗𝑒−𝑖𝜑

sin𝜗𝑒𝑖𝜑   0
0 sin𝜗𝑒𝑖𝜑

        0   sin𝜗𝑒−𝑖𝜑

sin𝜗𝑒𝑖𝜑 −2cos𝜗

) 

L1u = ℎ (

cos𝜗          0
0    cos𝜗

    sin𝜗𝑒−𝑖𝜑 0
  0 sin𝜗𝑒−𝑖𝜑

sin𝜗𝑒𝑖𝜑   0
  0 sin𝜗𝑒𝑖𝜑

−cos𝜗          0
0    −cos𝜗

) 

L2u = ℎ (

cos𝜗 sin𝜗𝑒−𝑖𝜑

sin𝜗𝑒𝑖𝜑 −cos𝜗

0               0
0               0

0           0
0           0

cos𝜗   sin𝜗𝑒−𝑖𝜑

sin𝜗𝑒𝑖𝜑 −cos𝜗

) 

| +  − ⟩u = – sin 
𝜗

2
 cos 

𝜗

2
𝑒−𝑖𝜑 | + + ⟩ + cos2 

𝜗

2
 |+ − ⟩ – sin2 

𝜗

2
 |− + ⟩ + sin 

𝜗

2
 cos 

𝜗

2
𝑒𝑖𝜑 |− − ⟩ 

| −  + ⟩u = – sin 
𝜗

2
 cos 

𝜗

2
𝑒−𝑖𝜑 | + + ⟩  – sin2 

𝜗

2
 |+ − ⟩ + cos2 

𝜗

2
 |− + ⟩ + sin 

𝜗

2
 cos 

𝜗

2
𝑒𝑖𝜑 |− − ⟩ 

unfortunately a simple C.S.C.O. like { L1
2
, L2

2
, L1z, L2z } with

4
 eigenvectors | +  − ⟩ and | −  + ⟩ is 

not suitable for the entanglement: we would have, for instance, DLx| +  − ⟩ ≠ 0 which is 

unacceptable; we need the C.S.C.O. { L1
2
, L2

2
, DL

2
, DLz } for determining the right combination 

between | +  − ⟩ and | −  + ⟩. 

The most direct way to determine the observable DL
2
 is: 

DL
2
 = DLx

2
 + DLy

2
 + DLz

2
 

thus we obtain: 

DL
2

 = 4ℎ2 (

2 0
0 1

0 0
1 0

0 1
0 0

1 0
0 2

) 
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 L1

2
 = L1x

2
 + L1y

2
 + L1z

2
 = 3h

2
I and L2

2
 = L2x

2
 + L2y

2
 + L2z

2
 = 3h

2
I. 



It is easily  calculable
5
 that this observable has one eigenvalue, three-fold degenerate (8ℎ2), with the  

triplet of eigenvectors | +  + ⟩, | −  − ⟩ and 1/√2(| +  − ⟩ + | − + ⟩), and one null eigenvalue, non-

degenerate, with the singlet eigenvector 1/√2(| +  − ⟩ − | −  + ⟩) which is representative of the 

entangled state | 𝛆 ⟩. 

In a measurement of the generic observable DLu (therefore for any observable) we have the same 

probabilities to obtain the states | +  − ⟩u (+ h for L1u and – h for L2u) and | −  + ⟩u (– h for L1u and + 

h for L2u): 

u⟨+ − | 𝛆 ⟩| 2 = (−sin
𝜗

2
cos 

𝜗

2
𝑒𝑖𝜑 cos2

𝜗

2
−sin2

𝜗

2
sin

𝜗

2
cos

𝜗

2
𝑒−𝑖𝜑)

(

 
 

0
1

√2

−
1

√2

0 )

 
 


= (

1

√2
)2

 = 
1

2
 

u⟨− + | 𝛆 ⟩| 2 = (−sin
𝜗

2
cos 

𝜗

2
𝑒𝑖𝜑 −sin2

𝜗

2
cos2

𝜗

2
sin

𝜗

2
cos

𝜗

2
𝑒−𝑖𝜑)

(

 
 

0
1

√2

−
1

√2

0 )

 
 


= (−

1

√2
)2

 = 
1

2
 

We can see that the normalized projections of | 𝛆 ⟩ onto | +  − ⟩u or | −  + ⟩u coincide with the same 

eigenvectors, while the mean value is null: 

⟨ 𝛆  DLu 𝛆 ⟩=(0
1

√2
−

1

√2
0) ℎ(

2cos𝜗 sin𝜗𝑒−𝑖𝜑

sin𝜗𝑒𝑖𝜑    0
sin𝜗𝑒−𝑖𝜑 0
      0 sin𝜗𝑒−𝑖𝜑

sin𝜗𝑒𝑖𝜑   0
0 sin𝜗𝑒𝑖𝜑

        0   sin𝜗𝑒−𝑖𝜑

sin𝜗𝑒𝑖𝜑 −2cos𝜗

)

(

 
 

0
1

√2

−
1

√2

0 )

 
 

=(

0
0
0
0

) 

It is easy to deduce that the normalized projection of | 𝛆 ⟩ onto any other eigenstate, chosen among 

| +  − ⟩z,x,y or | − + ⟩z,x,y, gives back the selected eigenstate, while all the other mean values ⟨ 𝐷𝐿z ⟩, 

⟨ 𝐷𝐿x ⟩ and ⟨ 𝐷𝐿y ⟩ are null. 

As we told above the double magnetic moment state DM has the same eigenvectors and all its mean 

values ⟨ 𝐷𝑀z ⟩, ⟨ 𝐷𝑀x ⟩, ⟨ 𝐷𝑀y ⟩ and ⟨ 𝐷𝑀u ⟩ are obviously null. 

A complicated Stern-Gerlach apparatus 

 
Figure 6 
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 Det [ DL

2
 – I ] = (8ℎ2– (8ℎ2– 4ℎ2– 


– 16ℎ4] = (8ℎ2– (8ℎ2– – 8ℎ2) = 0. 



The experiment could make us see the particular deflection of a beam of light (consisting of 

paramagnetic photons) in an inhomogeneous magnetic field (fig 6). 

Photons coming from a light bulb L get in a focussing device F which selects the photons with 

velocity parallel to the y axis; the collimated beam crosses an electromagnet E, remaining divided in 

two beams (with opposite deflections) by a strong magnetic gradient, and, after being analysed by 

two polaroids P1 and P2, lights up the wall A in two distant spots N1 and N2. The magnetic field B, 

with yz plane of symmetry, has no component along y; it strongly varies with z and, being 𝛁.B = 0, 

also varies with x. 

From the potential energy W = – 2MB it is possible to deduce the resultant of the forces exerted 

on the photon: 

F = 𝛁 (2MB) = 𝛁 (MtotB) 

neglecting Mtotx because of the high frequency of oscillation due to the Larmor precession (Mtoty 

gives no worries since By = 0), we have: 

F = 𝛁 (MtotzBz) = Mtotz 𝛁 Bz 

but 𝜕Bz/𝜕y = 0, because B is independent of y, and 𝜕Bz/𝜕x = 0 at any point belonging to the plane of 

symmetry yz. The force acting on the photon is therefore parallel to the z axis and proportional to 

Mtotz and 𝜕Bz/𝜕z; the same force depends on the sign of Mtotz (therefore on the direction of Mtot), 

because 𝜕Bz/𝜕z is only influenced by the geometry of the magnet poles. The structure of the photon 

is more amazing than we would have expected: the polarization can affect both the angular 

momentum Ltot of  and  particles and their magnetic moment Mtot, that’s to say even the null-

resultant spins! Thus the apparatus disposed like in figure 6 prepares the states: 

|  ⟩L = | + ⟩  and | 𝜓 ⟩M = | + ⟩ plus 

|  ⟩L = | − ⟩  and | 𝜓 ⟩M = | − ⟩, 

eigenvectors of Lz and Mz; rotating the magnet through the angle + /2 on the y axis we have: 

|  ⟩L = 
1

√2
 (| + ⟩ + |− ⟩)  and  | 𝜓 ⟩M = 

1

√2
 (| + ⟩ + |− ⟩)  plus 

|  ⟩L = 
1

√2
 (| + ⟩ – |− ⟩)  and  | 𝜓 ⟩M = 

1

√2
 (| + ⟩ – |− ⟩), 

eigenvectors of Lx and Mx. For a generic angle 𝜗 (< of the unit vector u lying on xz plane (𝜑 = 0), 

the observable Lu becomes: 

Lu = ℎ (
cos𝜗        sin𝜗
sin𝜗    −cos 𝜗

) 

  and the polarized states are: 

|  ⟩L = cos 
𝜗

2
 | + ⟩ + sin 

𝜗

2
 | − ⟩  and  | 𝜓 ⟩M = cos 

𝜗

2
 | + ⟩ + sin 

𝜗

2
 | − ⟩  plus 

|  ⟩L = −sin 
𝜗

2
 | + ⟩ + cos 

𝜗

2
 | − ⟩  and  | 𝜓 ⟩M = −sin 

𝜗

2
 | + ⟩ + cos 

𝜗

2
 | − ⟩, 



eigenvectors of Lu and Mu. 

What’s the problem then? As the time needed to cross the gap of the electromagnet is of the order 

of 10
–10

 s, the expected deflection angle is too little to be noticed without resorting to expedients. 

A fundamental work, carried out by Karpa and Weitz
6
, shows us that light passing through a 

rubidium gas cell (vg ≅ 300 m/s), under electromagnetically induced transparency, is deflected by a 

small magnetic gradient (10
–4

 T/m) through an angle of 10
–4

 rad. At vacuum light velocity 

conditions the deflection is dramatically reduced of 12 orders of magnitude (10
–16

 rad); even if we 

think about a stronger magnetic gradient (10
–1

 T/m) we can reach a maximum deflection of 10
–13

 

rad: buffer gas cells or other optical tricks are absolutely necessary! 

The enormous difficulty of pointing out this trifling deflection made us resolutely (but wrongly!) 

state: “No magnetic moment exists for photons in vacuum!”. On the contrary photons, in any 

condition, have their intrinsic magnetic moment which exactly coincides with the Bohr magneton 

B
7
. An important confirmation is, for instance, the paramagnetism of the hydrogen atom; the 

relation: 

M = 
𝑞

2𝑚𝑒
 L 

between the operators of magnetic moment M and angular momentum L has the eigenvalues of any 

component of M in the form: 

 = (
𝑞

2𝑚𝑒
) (mℎ) = mB with B = 

𝑞ℎ

2𝑚𝑒
 

where m is an integer, and the Bhor magneton B the integer contribution made by one photon! It is 

not difficult to deduce that ,  and the electron have the same ratio between electric charge and 

mass: that’s why they can vibrate in syntony! Other confirmations are all the atoms with 

paramagnetic behaviour. 

The inebriated state 

Applying the Nala-Damayanti model to the visible light something interesting emerges: the orbits 

intersect a rainbow mandorla (fig. 7) which had great importance among ancient civilizations, till 

the Gothic one: why? 

 
Figure 7 
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 “A Stern-Gerlach experiment for slow light”. (See bibliography). 

7
  Many scientists hurriedly gave the dark state polaritons a magnetic moment B, which is an exclusive of the photon. 



It is clear that the maximum probability of finding the  and  particles is inside the mandorla; the 

large radii of curvature of these orbital branches make us think about a velocity slowdown (because 

the total angular momentum Ltot is a constant of the motion). When the two particles are nearing 

each other they have an enlargement of their diameter as far as the interpenetration (the legend is 

extremely precise in describing Nala and Damayanti in continuous intimacy!); this condition 

minimizes the effect of the electrical charges and the binding strength between  and  particles is 

reduced: it is like if they got in an inebriated state and had a long, vibrating embrace, full of love for 

each other; that being so we must stop thinking about particles like spheres because they are more 

similar to elasticated disks. We met first with a similar problem in 2010 when the proton radius of 

muonic hydrogen (proton with negative muon) came up with a significantly lower value than that of 

canonical hydrogen (proton with electron) showing an elastic behaviour of the proton
8
. 

Unfortunately, our QED is not enough to explain this phenomenon: the cloud-like wave function of 

the two particles is spread out over the “S” orbital and the maximum probability of finding the 

particles is simply at the centre of a sphere: we are far enough from the real conditions. 

 
Figure 8 

 The orbits of  and  particles describe in the space a delicious apple (fig 8) and the maximum 

probability of finding the two particles is in its core; but as the pips cannot stay at the centre of the 

apple, so  or  never stay at the centre of the “S” orbital! This apple-like structure of the photon 

clearly emerges from another important ancient sacred text
9
. 

Conclusions 

The only concern of this paper has been confining ourselves to the internal degree of freedom of the 

photon. Taking a wider look at the wonderful couple - could be traumatic: many myths could 

explode. Truth shall fortunately make them explode! 

                                                           
8
 “The size of the proton”. (See bibliography). 

9
 Song of Songs (2, 3; 2, 5; 8, 5); in the Hebrew culture the couple of this sacred book symbolizes the photon, while the 

entanglement is a double cohort dance (7, 1). All the ancient civilizations symbolized the photon by myths or legends 

about indivisible couples, like Nala and Damayanti: the couple of the Love Songs with Mehi like Eros (Egypt), Eros 

and Psyche (Greece, Rome), Laila and Majnun (Arabs), the Legend of flutes (Redskin Indians), the First Human Couple 

from Titicaca (Andeans), …  
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